Университет макгилла

Персональные компьютеры

После 1970 года начался выпуск четвёртого поколения ЭВМ. Развитие вычислительной техники в это время характеризуется внедрением в производство компьютеров больших интегральных схем. Такие машины теперь могли совершать за одну секунду тысячи миллионов вычислительных операций, а ёмкость их ОЗУ увеличилась до 500 миллионов двоичных разрядов. Существенное снижение себестоимости микрокомпьютеров привело к тому, что возможность их купить постепенно появилась у обычного человека.

Одним из первых производителей персональных компьютеров стала компания Apple. Создавшие её Стив Джобс и Стив Возняк сконструировали первую модель ПК в 1976 году, дав ей название Apple I. Стоимость его составила всего 500 долларов. Через год была представлена следующая модель этой компании – Apple II.

Компьютер этого времени впервые стал похожим на бытовой прибор: помимо компактного размера, он имел изящный дизайн и интерфейс, удобный для пользователя. Распространение персональных компьютеров в конце 1970 годов привело к тому, что спрос на большие ЭВМ заметно упал. Этот факт всерьёз обеспокоил их производителя – компанию IBM, и в 1979 году она выпустила на рынок свой первый ПК.

Два года спустя появился первый микрокомпьютер этой фирмы с открытой архитектурой, основанный на 16-разрядном микропроцессоре 8088, производимом компанией «Интел». Компьютер комплектовался монохромным дисплеем, двумя дисководами для пятидюймовых дискет, оперативной памятью объемом 64 килобайта. По поручению компании-создателя фирма «Майкрософт» специально разработала операционную систему для этой машины. На рынке появились многочисленные клоны IBM PC, что подтолкнуло рост промышленного производства персональных ЭВМ.

В 1984 году компанией Apple был разработан и выпущен новый компьютер – Macintosh. Его операционная система была исключительно удобной для пользователя: представляла команды в виде графических изображений и позволяла вводить их с помощью манипулятора — мыши. Это сделало компьютер ещё более доступным, поскольку теперь от пользователя не требовалось никаких специальных навыков.

ЭВМ пятого поколения вычислительной техники некоторые источники датируют 1992-2013 годами. Вкратце их основная концепция формулируется так: это компьютеры, созданные на основе сверхсложных микропроцессоров, имеющие параллельно-векторную структуру, которая делает возможным одновременное выполнение десятков последовательных команд, заложенных в программу. Машины с несколькими сотнями процессоров, работающих параллельно, позволяют ещё более точно и быстро обрабатывать данные, а также создавать эффективно работающие сети.

Развитие современной вычислительной техники уже позволяет говорить и о компьютерах шестого поколения. Это электронные и оптоэлектронные ЭВМ, работающие на десятках тысяч микропроцессоров, характеризующиеся массовым параллелизмом и моделирующие архитектуру нейронных биологических систем, что позволяет им успешно распознавать сложные образы.

Последовательно рассмотрев все этапы развития вычислительной техники, следует отметить интересный факт: изобретения, хорошо зарекомендовавшие себя на каждом из них, сохранились до наших дней и с успехом продолжают использоваться.

Транзисторы. Выпуск первых серийных компьютеров

Однако лампы очень быстро выходили из строя, весьма затрудняя работу с машиной. Транзистор, изобретённый в 1947 году, сумел решить эту проблему. Используя электрические свойства полупроводников, он выполнял те же задачи, что и электронные лампы, однако занимал значительно меньший объём и расходовал не так много энергии. Наряду с появлением ферритовых сердечников для организации памяти компьютеров, использование транзисторов дало возможность заметно уменьшить размеры машин, сделать их ещё надёжнее и быстрее.

В 1954 году американская фирма «Техас Инструментс» начала серийно производить транзисторы, а два года спустя в Массачусетсе появился первый построенный на транзисторах компьютер второго поколения – ТХ-О.

В середине прошлого столетия значительная часть государственных организаций и крупных компаний использовала компьютеры для научных, финансовых, инженерных расчётов, работы с большими массивами данных. Постепенно ЭВМ приобретали знакомые нам сегодня черты. В этот период появились графопостроители, принтеры, носители информации на магнитных дисках и ленте.

Активное использование вычислительной техники привело к расширению областей её применения и потребовало создания новых программных технологий. Появились языки программирования высокого уровня, позволяющие переносить программы с одной машины на другую и упрощающие процесс написания кода («Фортран», «Кобол» и другие). Появились особые программы-трансляторы, преобразовывающие код с этих языков в команды, прямо воспринимаемые машиной.

Разработка архитектуры

В 1945 году американским математиком венгерско-немецкого происхождения Джоном (Яношем Лайошем) фон Нейманом был создан прообраз архитектуры современных компьютеров. Он предложил записывать программу в виде кода непосредственно в память машины, подразумевая совместное хранение в памяти компьютера программ и данных.

Архитектура фон Неймана легла в основу создаваемого в то время в Соединённых Штатах первого универсального электронного компьютера – ENIAC. Этот гигант весил около 30 тонн и располагался на 170 квадратных метрах площади. В работе машины были задействованы 18 тыс. ламп. Этот компьютер мог произвести 300 операций умножения или 5 тыс. сложения за одну секунду.

Первая в Европе универсальная программируемая ЭВМ была создана в 1950 году в Советском Союзе (Украина). Группа киевских учёных, возглавляемая Сергеем Алексеевичем Лебедевым, сконструировала малую электронную счётную машину (МЭСМ). Её быстродействие составляло 50 операций в секунду, она содержала около 6 тыс. электровакуумных ламп.

В 1952 году отечественная вычислительная техника пополнилась БЭСМ — большой электронной счётной машиной, также разработанной под руководством Лебедева. Эта ЭВМ, выполнявшая в секунду до 10 тыс. операций, была на тот момент самой быстродействующей в Европе. Ввод информации в память машины происходил при помощи перфоленты, выводились данные посредством фотопечати.

В этот же период в СССР выпускалась серия больших ЭВМ под общим названием «Стрела» (автор разработки – Юрий Яковлевич Базилевский). С 1954 года в Пензе началось серийное производство универсальной ЭВМ «Урал» под руководством Башира Рамеева. Последние модели были аппаратно и программно совместимы друг с другом, имелся широкий выбор периферических устройств, позволяющий собирать машины различной комплектации.

Классы вычислительной техники

Существуют различные варианты классификации ЭВМ.

Так, по назначению компьютеры делятся:

  • на универсальные – те, которые способны решать самые различные математические, экономические, инженерно-технические, научные и другие задачи;
  • проблемно-ориентированные – решающие задачи более узкого направления, связанные, как правило, с управлением определёнными процессами (регистрация данных, накопление и обработка небольших объёмов информации, выполнение расчётов в соответствии с несложными алгоритмами). Они обладают более ограниченными программными и аппаратными ресурсами, чем первая группа компьютеров;
  • специализированные компьютеры решают, как правило, строго определённые задачи. Они имеют узкоспециализированную структуру и при относительно низкой сложности устройства и управления достаточно надёжны и производительны в своей сфере. Это, к примеру, контроллеры или адаптеры, управляющие рядом устройств, а также программируемые микропроцессоры.

По размерам и производительной мощности современная электронно-вычислительная техника делится:

  • на сверхбольшие (суперкомпьютеры);
  • большие компьютеры;
  • малые компьютеры;
  • сверхмалые (микрокомпьютеры).

Таким образом, мы увидели, что устройства, сначала изобретённые человеком для учёта ресурсов и ценностей, а затем – быстрого и точного проведения сложных расчётов и вычислительных операций, постоянно развивались и совершенствовались.

Суперкомпьютер в культуре

(Искусственный интеллект СкайНет из КибердайнСистемс, фильм «Терминатор»)

За всю историю существования понятия «суперкомпьютер», его возможности искусственного интеллекта будоражили воображение творческих людей, в результате чего было создано огромное количество, прежде всего, художественных фильмов фантастической направленности:

  • 1968 год: в прокат вышел фильм «2001 год: Космическая одиссея». Он считается величайшим научно-фантастических фильмом даже в настоящее время. Повествует о конфликте искусственного и естественного разумов.
  • 2008 год: Фильм «Железный человек». В главной роли – Роберт Дауни- младший. Снят по мотивам одноименным комиксов.
  •     В этом же году на суд зрителей вышел фильм «На крючке» (орлиный глаз). В том фильме суперкомпьютер решил, что деятельность правительства вредна для страны, и начал действовать самостоятельно.
  • 2012 год: Еще одни герои комиксов оказались экранизированы – на этот раз речь идет о «Мстителях». Супергерои, обладающие разными суперспособностями, по очереди спасаются нашу планету от неминуемой гибели.
  • 2013 год: «Тихоокеанский рубеж» с Гильермо дель Торо в главной роли. Фильм повествует и гигантских роботах, которые пилотируют военные.
  • 2014 год: Выходит еще один фильм на ту же тему под названием «Новый человек-паук: высокое напряжение».


(Суперкомпьютер IBM)

Ну и, конечно, главные фильмы про искусственный интеллект, вышедший из под контроля – это трилогия «Матрица» и все части «Терминатора». Идея того, как суперкомпьютер собирается уничтожить все человечество, вызывает повышенный интерес, но и быть может за этим есть повод задуматься.

Piz Daint

Суперкомпьютер Piz Daint достаточно долго (с 2013 до 2018 года) занимал третье место в рейтинге самых мощных вычислительных систем в мире. В то же время он остается самым производительным компьютером Европы. Стоимость проекта составила около 40 млн швейцарских франков.

Модель получила название в честь одноименной территории в Швейцарских Альпах и находится в национальном суперкомпьютерном центре. Оборудование, из которого состоит СуперЭВМ, располагается в 28 стойках. Для работы техники требуется 2,3 МВт электричества, и по этому показателю Piz Daint обеспечивает лучшую удельную производительность – 9,2 Пфлопс/МВт.

В составе ЭВМ есть другой суперкомпьютер Piz Dora, сначала работавший отдельно. После объединения мощностей швейцарские разработчики получили вычислительную систему с 362 тысячами ядер (процессоры Xeon E5-2690v3) номинальной производительностью 21,23 Пфлопс. Максимальная скорость работы – 27 Пфлопс.

Основные задачи суперкомпьютера – расчеты для исследований в области геофизики, метеорологии, физике и климатологии. Одно из приложений для ЭВМ, COSMO, представляет собой метеорологическую модель и используется метеослужбами Германии и Швейцарии для получения высокоточных прогнозов погоды.

Summit

Суперкомпьютер Summit, созданный американской компанией IBM для Национальной лаборатории в Окридже. Технику ввели в эксплуатацию летом 2018 года, заменив модель Titan, которая считалась самой производительной американской СуперЭВМ. Разработка лучшего современного суперкомпьютера обошлась американскому правительству в 200 млн долларов.

Устройство потребляет около 15 МВт электроэнергии – столько, сколько вырабатывает небольшая ГЭС. Для охлаждения вычислительной системы используется 15,1 кубометра циркулирующей по трубкам воды. Сервера IBM расположены на площади около 930 кв.м – территория, которую занимают 2 баскетбольные площадки. Для работы суперкомпьютера используется 220 км электрокабелей.

Производительность компьютера обеспечивается 9216 процессорами модели IBM POWER9 и 27648 графическими чипами Tesla V100 от Nvidia. Система получила целых 512 Гбайт оперативной и 250 Пбайт постоянной памяти (интерфейс 2,5 Тбайт/с). Максимальная скорость вычислений – 200 Пфлопс, а номинальная производительность – 143,5 Пфлопс.

По словам американских ученых, запуск в работу модели Summit позволил повысить вычислительные мощности в сфере энергетики, экономическую конкурентоспособность и национальную безопасность страны. Среди задач, которые будут решаться с помощью суперкомпьютера, отмечают поиск связи между раковыми заболеваниями и генами живого организма, исследование причин появления зависимости от наркотиков и климатическое моделирование для составления точных прогнозов погоды.

Первые механические счётные устройства

В 1623 году немецким учёным Вильгельмом Шиккардом был создан первый механический «калькулятор», который он назвал считающими часами. Механизм этого прибора напоминал обычный часовой, состоящий из шестерёнок и звёздочек. Однако известно об этом изобретении стало только в середине прошлого столетия.

Качественным скачком в области технологии вычислительной техники стало изобретение суммирующей машины «Паскалины» в 1642 году. Её создатель, французский математик Блез Паскаль, начал работу над этим устройством, когда ему не было и 20 лет. «Паскалина» представляла собой механический прибор в виде ящичка с большим количеством взаимосвязанных шестерёнок. Числа, которые требовалось сложить, вводились в машину поворотами специальных колёсиков.

В 1673 году саксонский математик и философ Готфрид фон Лейбниц изобрёл машину, выполнявшую четыре основных математических действия и умевшую извлекать квадратный корень. Принцип её работы был основан на двоичной системе счисления, специально придуманной учёным.

В 1818 году француз Шарль (Карл) Ксавье Тома де Кольмар, взяв за основу идеи Лейбница, изобрёл арифмометр, умеющий умножать и делить. А ещё спустя два года англичанин Чарльз Бэббидж приступил к конструированию машины, которая способна была бы производить вычисления с точностью до 20 знаков после запятой. Этот проект так и остался неоконченным, однако в 1830 году его автор разработал другой – аналитическую машину для выполнения точных научных и технических расчётов. Управлять машиной предполагалось программным путём, а для ввода и вывода информации должны были использоваться перфорированные карты с разным расположением отверстий. Проект Бэббиджа предугадал развитие электронно-вычислительной техники и задачи, которые смогут быть решены с её помощью.

Примечательно, что слава первого в мире программиста принадлежит женщине – леди Аде Лавлейс (в девичестве Байрон). Именно она создала первые программы для вычислительной машины Бэббиджа. Её именем впоследствии был назван один из компьютерных языков.

Sunway TaihuLight

Китайская СуперЭВМ удерживала лидирующую позицию в рейтинге TOP500 с 2016 до 2018 года. В соответствии с тестами LINPACK ее считали самым производительным суперкомпьютером, минимум в полтора раза превосходящим ближайшего конкурента и втрое опережающим самую производительную американскую модель Titan. Разработка и строительство вычислительной системы обошлось в 1,8 млрд. юаней или 270 млн долларов. Инвесторами проекта были правительство Китая, администрация китайской провинции Цзянсу и города Уси.

Суперкомпьютер потребляет 15,3 МВт электроэнергии и занимает площадь 605 кв.м. Расположен он на территории города Уси, в национальном суперкомпьютерном центре. Название модели дали в честь расположенного рядом озера Тайху, третьего по величине пресноводного водоема Китая.

Наличие в конструкции ЭВМ 41 тысячи процессоров SW26010 и 10,6 миллиона ядер позволяет ей проводить расчеты со скоростью 93 Пфлопс. Максимальная производительность – 125 Пфлопс. Переход на чипы китайского производства потребовал от разработчиков создания полностью новой системы. До этого предполагалось в 2 раза повысить производительность другой китайской СуперЭВМ Тяньхэ-2, но эти намерения пришлось изменить из-за проблем с поставками процессоров Intel из США.

Модель Sunway TaihuLight применяется для выполнения сложных вычислений в области медицины, горнодобывающей промышленности и производстве. С помощью вычислительной машины прогнозируют погоду, исследуют новые лекарства и анализируют «большие данные» – массивы информации, обработать которые не получится даже у самого мощного серийного компьютера.

Начало компьютерной эры

Правительства стран, участвующих во Второй мировой войне, осознавали стратегическую роль вычислительных машин в ведении военных действий. Это послужило толчком к разработкам и параллельному возникновению в этих странах первого поколения компьютеров.

Пионером в области компьютеростроения стал Конрад Цузе – немецкий инженер. В 1941 году им был создан первый вычислительный автомат, управляемый при помощи программы. Машина, названная Z3, была построена на телефонных реле, программы для неё кодировались на перфорированной ленте. Этот аппарат умел работать в двоичной системе, а также оперировать числами с плавающей запятой.

Первым действительно работающим программируемым компьютером официально признана следующая модель машины Цузе – Z4. Он также вошёл в историю как создатель первого высокоуровневого языка программирования, получившего название «Планкалкюль».

В 1942 году американские исследователи Джон Атанасов (Атанасофф) и Клиффорд Берри создали вычислительное устройство, работавшее на вакуумных трубках. Машина также использовла двоичный код, могла выполнять ряд логических операций.

В 1943 году в английской правительственной лаборатории, в обстановке секретности, была построена первая ЭВМ, получившая название «Колосс». В ней вместо электромеханических реле использовалось 2 тыс. электронных ламп для хранения и обработки информации. Она предназначалась для взлома и расшифровки кода секретных сообщений, передаваемых немецкой шифровальной машиной «Энигма», которая широко применялась вермахтом. Существование этого аппарата ещё долгое время держалось в строжайшей тайне. После окончания войны приказ о его уничтожении был подписан лично Уинстоном Черчиллем.

Самые первые приспособления для счёта

Наиболее ранний инструмент для счёта, который знает история развития вычислительной техники, – десять пальцев на руках человека. Результаты счёта первоначально фиксировались при помощи пальцев, зарубок на дереве и камне, специальных палочек, узелков.

С возникновением письменности появлялись и развивались различные способы записи чисел, были изобретены позиционные системы счисления (десятичная – в Индии, шестидесятиричная – в Вавилоне).

Примерно с IV века до нашей эры древние греки стали вести счёт при помощи абака. Первоначально это была глиняная плоская дощечка с нанесёнными на неё острым предметом полосками. Счёт осуществлялся путём размещения на этих полосах в определённом порядке мелких камней или других небольших предметов.

В Китае в IV столетии нашей эры появились семикосточковые счёты – суанпан (суаньпань). На прямоугольную деревянную раму натягивались проволочки или верёвки — от девяти и более. Ещё одна проволочка (верёвка), натянутая перпендикулярно остальным, разделяла суанпан на две неравные части. В большем отделении, именуемом «землёй», на проволочки было нанизано по пять косточек, в меньшем – «небе» – их было по две. Каждая из проволочек соответствовала десятичному разряду.

Традиционные счёты соробан стали популярными в Японии с XVI века, попав туда из Китая. В это же время счёты появились и в России.

В XVII столетии на основании логарифмов, открытых шотландским математиком Джоном Непером, англичанин Эдмонд Гантер изобрёл логарифмическую линейку. Это устройство постоянно совершенствовалось и дожило до наших дней. Оно позволяет умножать и делить числа, возводить в степень, определять логарифмы и тригонометрические функции.

Логарифмическая линейка стала прибором, завершающим развитие средств вычислительной техники на ручном (домеханическом) этапе.

Назначение суперкомпьютеров

Суперкомпьютеры решают разнообразные задачи – от сложных математических расчетов и обработки огромных массивов данных до моделирования искусственного интеллекта. Есть модели, воспроизводящие «архитектуру» человеческого мозга. На СуперЭВМ проектируют промышленное оборудование и электронику, синтезируют новые материалы и делают научные открытия.

Автомобилестроительные компании используют суперкомпьютеры для имитации результатов краш-тестов, экономя средства на настоящих испытаниях. Подходит такая мощная техника и для разработки новых двигателей, позволяя моделировать специальный температурный режим и процессы деформации. С ее же помощью можно прогнозировать метеорологические явления и даже землетрясения.

Хронология развития суперкомпьютера

Дальнейшая хронология событий выглядит следующим образом:

  • 1965 год: Была выпущена первая ЭВМ, работающая на принципе параллельной вычислительной системы. Ее название – ILLIAC IV, производитель – компания Burroughs, заказчик – NASA. Отличительной чертой этого компьютера была высокая производительность – он выполнял 150 млн. операций с плавающей точкой в секунду (150 мегафлопсов).
  • 1974 год: Американец Сеймур Крей изобрел малогабаритную супер-ЭВМ под названием CRAY-1 производительностью 180 мегафлопсов. Она получила широкое распространение в проектах, финансируемых правительством, а также в промышленности.
  • 1985 год: Корпорация Fujitsu и компания NEC выпустили суперкомпьютеры, преодолевшие рубеж в миллион операций в секунду. FACOM VP-400 от Fujitsu работал со скоростью 1,14 гигафлопса в секунду, а NEC SX-2 – 1,13 гигафлопса.
  • 1990 год: Компания Intel разработала ЭВМ Intel iPSC/860. В нем было 128 процессов, а суммарная производительность превышала 2,6 гигафлопса.
  • 1996 год: Компания IBM применила при производстве компьютера кластерную систему, при которой несколько компьютеров оказались объединенными в единую систему. Его производительность достигала 3 терафлопсов.
  • Март 2002 года: Рейтинг всех суперкомпьютеров возглавил компьютер с производительностью 35,86 терафлопса. Он использовался в работе программы Earth Simulator, которая мониторила изменения климата и прогнозировала его изменения.
  • Июнь 2008 года: IBM представляет Roadrunner. Его максимальная производительность – 1,105 петафлопса.

Сегодня суперкомпьютеры обладают высокой, порой поражающей воображение вычислительной мощностью. Они в состоянии решить сверхсложные задачи – например, прогнозировать улучшение или ухудшение погоды, а также моделирование ядерных испытаний.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
MST
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: